Asymptotic Profiles of the Steady States for an SIS Epidemic Patch Model
نویسندگان
چکیده
Spatial heterogeneity, habitat connectivity, and rates of movement can have large impacts on the persistence and extinction of infectious diseases. These factors are shown to determine the asymptotic profile of the steady states in a frequency-dependent SIS (susceptible-infectedsusceptible) epidemic model with n patches in which susceptible and infected individuals can both move between patches. Patch differences in local disease transmission and recovery rates characterize whether patches are low-risk or high-risk, and these differences collectively determine whether the spatial domain, or habitat, is low-risk or high-risk. The basic reproduction number R0 for the model is determined. It is then shown that when the disease-free equilibrium is stable (R0 < 1) it is globally asymptotically stable, and that when the disease-free equilibrium is unstable (R0 > 1) there exists a unique endemic equilibrium. Two main theorems link spatial heterogeneity, habitat connectivity, and rates of movement to disease persistence and extinction. The first theorem relates the basic reproduction number to the heterogeneity of the spatial domain. For low-risk domains, the disease-free equilibrium is stable (R0 < 1) if and only if the mobility of infected individuals lies above a threshold value, but for high-risk domains, the disease-free equilibrium is always unstable (R0 > 1). The second theorem states that when the endemic equilibrium exists, it tends to a spatially inhomogeneous disease-free equilibrium as the mobility of susceptible individuals tends to zero. This limiting disease-free equilibrium has a positive number of susceptible individuals on all low-risk patches and can also have a positive number of susceptible individuals on some, but not all, high-risk patches. Sufficient conditions for whether high-risk patches in the limiting disease-free equilibrium have susceptible individuals or not are given in terms of habitat connectivity, and these conditions are illustrated using numerical examples. These results have important implications for disease control.
منابع مشابه
ENTROPY FOR DTMC SIS EPIDEMIC MODEL
In this paper at rst, a history of mathematical models is given.Next, some basic information about random variables, stochastic processesand Markov chains is introduced. As follows, the entropy for a discrete timeMarkov process is mentioned. After that, the entropy for SIS stochastic modelsis computed, and it is proved that an epidemic will be disappeared after a longtime.
متن کاملStability and Bifurcation of an SIS Epidemic Model with Saturated Incidence Rate and Treatment Function
In this paper an SIS epidemic model with saturated incidence rate and treatment func- tion is proposed and studied. The existence of all feasible equilibrium points is discussed. The local stability conditions of the disease free equilibrium point and endemic equilibrium point are established with the help of basic reproduction number.However the global stabili- ty conditions of these eq...
متن کاملAsymptotic Profiles of the Steady States for an SIS Epidemic Reaction-Diffusion Model
To understand the impact of spatial heterogeneity of environment and movement of individuals on the persistence and extinction of a disease, a spatial SIS reaction-diffusion model is studied, with the focus on the existence, uniqueness and particularly the asymptotic profile of the steadystates. First, the basic reproduction number R0 is defined for this SIS PDE model. It is shown that if R0 < ...
متن کاملDynamics of a Delayed Epidemic Model with Beddington-DeAngelis Incidence Rate and a Constant Infectious Period
In this paper, an SIR epidemic model with an infectious period and a non-linear Beddington-DeAngelis type incidence rate function is considered. The dynamics of this model depend on the reproduction number R0. Accurately, if R0 < 1, we show the global asymptotic stability of the disease-free equilibrium by analyzing the corresponding characteristic equation and using compa...
متن کاملمدل اپیدمی یک مفهوم در رده های موضوعی پروانههای ثبت اختراع: مطالعه موردی اصطلاح RFID
The current research aims at studying the epidemic model of the term RFID within the classes of patents. Methodology: The research is descriptive and has been conducted based on the mathematical models of diseases. Research population consists of 35,627 granted patents from the USPTO database those which the terms RFID or Radio Frequency Identification occur in their titles or abstracts. Data a...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
- SIAM Journal of Applied Mathematics
دوره 67 شماره
صفحات -
تاریخ انتشار 2007